
Les meilleurs livres Intelligence artificielle
46 livres et 54 critiques, dernière mise à jour le 15 décembre 2024 , note moyenne : 4.4
Livres en français
- Gradient Boosting - Exploitez les arbres de décision pour le Machine Learning (XGBoost, CatBoost, LightGBM)
 - Introduction au Machine Learning
 - Intelligence artificielle, l'affaire de tous - De la science au business
 - Spark - Valorisez vos données en temps réel avec Spark ML et Hadoop
 - Data science - Cours et exercices
 - Apprentissage artificiel - Deep learning, concepts et algorithmes
 - Deep Learning avec TensorFlow - Mise en oeuvre et cas concrets
 - Machine Learning avec Scikit-Learn - Mise en oeuvre et cas concrets
 - Big Data et Machine Learning - Les concepts et les outils de la data science
 - Data Scientist et langage R - Guide d'autoformation à l'exploitation des Big Data
 - L'Intelligence Artificielle pour les développeurs - Concepts et implémentations en Java
 - Apprentissage machine - De la théorie à la pratique - Concepts fondamentaux en Machine Learning
 - Apprentissage artificiel - Concepts et algorithmes
 - Intelligence artificielle
 - Réseaux de neurones - Méthodologie et applications
 - Intelligence Artificielle
 - Apprentissage statistique - Réseaux de neurones - Cartes topologiques - Machines à vecteurs supports
 - L'Intelligence Artificielle pour les développeurs - Concepts et implémentations en C#
 
Livres en anglais
- Prompt Engineering for Generative AI - Future-Proof Inputs for Reliable AI Outputs
 - Building LLMs for Production - Enhancing LLM Abilities and Reliability with Prompting, Fine-Tuning, and RAG
 - Hands-On Large Language Models - Language Understanding and Generation
 - All-in On AI - How Smart Companies Win Big with Artificial Intelligence
 - Natural Language Processing in the Real World - Text Processing, Analytics, and Classification
 - Text Analytics - An Introduction to the Science and Applications of Unstructured Information Analysis
 - Practical Simulations for Machine Learning - Using Synthetic Data for AI
 - Natural Language Processing with Transformers - Building Language Applications with Hugging Face
 - Deep Learning on Graphs
 - Scientific Writing 3.0 - A Reader and Writer's Guide
 - Reinforcement Learning and Stochastic Optimization - A Unified Framework for Sequential Decisions
 - Interpretable Machine Learning with Python - Learn to build interpretable high-performance models with hands-on real-world examples
 - Graph Machine Learning - Take graph data to the next level by applying machine learning techniques and algorithms
 - Reinforcement Learning - Industrial Applications of Intelligent Agents
 - The Art of Feature Engineering - Essentials for Machine Learning
 - Bandit Algorithms
 - Machine Learning Under a Modern Optimization Lens
 - Ensemble Learning - Pattern Classification Using Ensemble Methods
 - Handbook of Machine Learning - Volume 2: Optimization and Decision Making
 - Handbook of Machine Learning - Volume 1: Foundation of Artificial Intelligence
 - Fundamentals of Data Visualization - A Primer on Making Informative and Compelling Figures
 - Practical Tableau - 100 Tips, Tutorials, and Strategies from a Tableau Zen Master
 - Data Science from Scratch - First Principles with Python
 - Generative Deep Learning - Teaching Machines to Paint, Write, Compose, and Play
 - Practical Time Series Analysis - Prediction With Statistics and Machine Learning
 - Hands-On Unsupervised Learning Using Python - How to Build Applied Machine Learning Solutions from Unlabeled Data
 - Machine Learning for Data Streams - With Practical Examples in MOA
 - Natural Language Processing with Python