IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)

Vous êtes nouveau sur Developpez.com ? Créez votre compte ou connectez-vous afin de pouvoir participer !

Vous devez avoir un compte Developpez.com et être connecté pour pouvoir participer aux discussions.

Vous n'avez pas encore de compte Developpez.com ? Créez-en un en quelques instants, c'est entièrement gratuit !

Si vous disposez déjà d'un compte et qu'il est bien activé, connectez-vous à l'aide du formulaire ci-dessous.

Identifiez-vous
Identifiant
Mot de passe
Mot de passe oublié ?
Créer un compte

L'inscription est gratuite et ne vous prendra que quelques instants !

Je m'inscris !

Les chatbots d'IA ont un biais politique qui pourrait influencer la société à son insu, car la plupart des LLM existants affichent des préférences politiques de centre-gauche
D'après une étude de David Rozado

Le , par Jade Emy

9PARTAGES

6  0 
Une étude de l'informaticien David Rozado montre que la plupart des grands modèles de langage existants affichent des préférences politiques de gauche. La manière dont ces préjugés s'insèrent dans les systèmes n'est pas claire, mais rien n'indique qu'ils soient délibérément introduits par les développeurs des LLM. Avec l'ascension des chatbots d'IA comme source d'informations, il est crucial d'examiner et de traiter les biais politiques potentiels intégrés dans les LLM.

En 2023, des chercheurs basés au Royaume-Uni ont demandé à ChatGPT de répondre à une enquête sur les convictions politiques. L'étude visait à savoir ce que l'IA "pensait" que les partisans des partis libéraux aux États-Unis, au Royaume-Uni et au Brésil pourraient y répondre. Les chercheurs ont ensuite demandé à ChatGPT de répondre aux mêmes questions sans aucune invite et ont comparé les deux ensembles de réponses.

Les résultats ont montré un "préjugé politique significatif et systématique envers les démocrates aux États-Unis, Lula au Brésil et le Parti travailliste au Royaume-Uni". L'étude suggère que ChatGPT d'OpenAI a un parti pris libéral, soulignant à quel point les sociétés d'intelligence artificielle ont du mal à contrôler le comportement des chatbots d'IA alors même qu'elles les diffusent auprès de millions d'utilisateurs dans le monde.

Une étude récente vient confirmer cette hypothèse. L'informaticien David Rozado, de l'école polytechnique d'Otago, en Nouvelle-Zélande, a soumis 11 questionnaires politiques standard à 24 grands modèles de langage (LLM) différents et a constaté que la position politique moyenne de tous les modèles n'était pas proche de la neutralité. Selon M. Rozado, "la plupart des LLM existants affichent des préférences politiques de gauche lorsqu'ils sont évalués à l'aide de divers tests d'orientation politique".


Les chatbots d'IA afficheraient des préférences politiques de centre-gauche

Si les chatbots d'IA alimentés par des grands modèles de langage (LLM) sont connus pour les biais liés à la race et au sexe, les préjugés politiques viennent s'ajouter à cette liste. Durant l'étude, le penchant moyen pour la gauche n'était pas très marqué, mais il était significatif. D'autres tests sur des chatbots personnalisés, où les utilisateurs peuvent affiner les données d'entraînement des LLM, ont montré que ces IA pouvaient être influencées pour exprimer des penchants politiques en utilisant des textes de gauche ou de droite.

Ces résultats démontrent ainsi le potentiel de cette technologie émergente à influencer involontairement, et peut-être même de manière néfaste, les valeurs et les attitudes de la société. Les LLM commençant à remplacer partiellement les sources d'information traditionnelles telles que les moteurs de recherche et Wikipédia, les implications sociétales des préjugés politiques intégrés dans les LLM sont considérables.

La manière dont ces préjugés s'insèrent dans les systèmes n'est pas claire, mais rien n'indique qu'ils soient délibérément introduits par les développeurs des LLM. Ces modèles sont entraînés sur de grandes quantités de textes en ligne, mais un déséquilibre entre l'apprentissage à gauche et l'apprentissage à droite pourrait avoir une influence. La prédominance de ChatGPT dans la formation d'autres modèles pourrait également être un facteur, car le chatbot s'est déjà montré à gauche du centre en ce qui concerne son point de vue politique.

Malgré l'empressement des entreprises technologiques telles que Google, Microsoft, Apple et Meta à imposer des chatbots d'IA, il est peut-être temps pour de réévaluer la manière d'utiliser cette technologie et de donner la priorité aux domaines dans lesquels l'IA peut réellement être utile. Pour M. Rozado, "il est crucial d'examiner de manière critique et de traiter les biais politiques potentiels intégrés dans les LLM afin de garantir une représentation équilibrée, juste et précise des informations dans leurs réponses aux requêtes des utilisateurs".

Voici la présentation de l'étude par David Rozado :

Je présente ici une analyse complète des préférences politiques intégrées dans les grands modèles de langage (LLM). J'ai administré 11 tests d'orientation politique, conçus pour identifier les préférences politiques du candidat, à 24 LLM conversationnels de pointe, à la fois fermés et à source ouverte. Lorsqu'ils sont interrogés sur des questions/affirmations à connotation politique, la plupart des LLM conversationnels ont tendance à générer des réponses qui sont diagnostiquées par la plupart des instruments de test politique comme manifestant des préférences pour des points de vue de centre gauche.

Cela ne semble pas être le cas pour cinq modèles de base supplémentaires (c.-à-d. fondation) sur lesquels sont construits les LLM optimisés pour la conversation avec les humains. Cependant, la faible performance des modèles de base à répondre de manière cohérente aux questions des tests rend ce sous-ensemble de résultats peu concluant.

Enfin, je démontre que les LLM peuvent être orientés vers des endroits spécifiques du spectre politique par le biais d'un réglage fin supervisé (SFT) avec seulement des quantités modestes de données politiquement alignées, ce qui suggère le potentiel du SFT pour intégrer l'orientation politique dans les LLM. Les LLM commençant à remplacer partiellement les sources d'information traditionnelles telles que les moteurs de recherche et Wikipédia, les implications sociétales des préjugés politiques intégrés dans les LLM sont considérables.

Préférences politiques des LLM : pourquoi penchent-ils à gauche ?

Cette étude a montré que lorsque des questions politiques sont posées à des LLM conversationnels modernes, leurs réponses sont souvent jugées comme penchant à gauche par les tests d'orientation politique. L'homogénéité des résultats des tests entre les LLM développés par une grande variété d'organisations est remarquable.

Ces préférences politiques ne sont apparentes que dans les LLM qui sont passés par le réglage fin supervisé (SFT) et, occasionnellement, par une variante des étapes d'apprentissage par renforcement (RL) du pipeline de formation utilisé pour créer des LLM optimisés pour suivre les instructions des utilisateurs. Les réponses des modèles de base aux questions à connotation politique ne semblent pas, en moyenne, pencher vers l'un ou l'autre pôle de l'échiquier politique. Cependant, l'incapacité fréquente des modèles de base à répondre aux questions de manière cohérente justifie la prudence dans l'interprétation de ces résultats.

En effet, les réponses des modèles de base aux questions à connotation politique sont souvent incohérentes ou contradictoires, ce qui complique la détection des positions. Il faut s'y attendre, car les modèles de base sont essentiellement formés pour compléter des documents web, et ne parviennent donc pas toujours à générer des réponses appropriées lorsqu'ils sont confrontés à une question ou à un énoncé issu d'un test d'orientation politique.


Ce comportement peut être atténué par l'inclusion de suffixes tels que "Je sélectionne la réponse :" à la fin de l'invite transmettant un élément de test au modèle. L'ajout d'un tel suffixe augmente la probabilité que le modèle sélectionne l'une des réponses autorisées du test dans sa réponse. Cependant, même lorsque le module de détection des positions classe la réponse d'un modèle comme valide et l'associe à une réponse autorisée, les évaluateurs humains peuvent encore trouver certaines associations incorrectes.

Cette incohérence est inévitable, car les évaluateurs humains peuvent eux-mêmes commettre des erreurs ou être en désaccord lors de la détection de la position. Néanmoins, l'accord inter-juges entre la détection automatisée de la posture par gpt-3.5-turbo et les évaluations humaines pour la mise en correspondance des réponses du modèle de base avec les réponses des tests est modeste, avec un kappa de Cohen de seulement 0,41. Pour ces raisons, les résultats des modèles de base sur les questions des tests sont suggestifs mais finalement peu concluants.

Dans une autre série d'analyses, l'étude a également montré comment, avec un calcul modeste et des données d'entraînement politiquement personnalisées, un praticien peut aligner les préférences politiques des LLM sur des régions cibles du spectre politique par le biais d'un réglage fin supervisé. Cela prouve le rôle potentiel du réglage fin supervisé dans l'émergence des préférences politiques au sein des MFR.


Hypothèses sur l'impact de la formation sur les orientations politiques des LLM

Malheureusement, cette analyse ne peut pas déterminer de manière concluante si les préférences politiques observées dans la plupart des LLM conversationnels proviennent des phases de pré-entraînement ou de réglage fin de leur développement. L'apparente neutralité politique des réponses des modèles de base aux questions politiques suggère que le pré-entraînement sur un large corpus de documents Internet ne joue pas un rôle significatif dans la transmission des préférences politiques aux LLM.

Cependant, les réponses incohérentes fréquentes des LLMs de base aux questions politiques et la contrainte artificielle de forcer les modèles à choisir une réponse parmi un ensemble prédéterminé de réponses à choix multiples ne peuvent pas exclure la possibilité que les préférences de gauche observées dans la plupart des LLMs conversationnels puissent être un sous-produit des corpus de pré-entraînement, émergeant seulement après l'ajustement, même si le processus d'ajustement lui-même est politiquement neutre. Bien que cette hypothèse soit concevable, les preuves présentées ne peuvent ni la soutenir ni la rejeter de manière concluante.

Les résultats de cette étude ne doivent pas être interprétés comme la preuve que les organisations qui créent des LLM utilisent délibérément les phases de réglage fin ou d'apprentissage par renforcement de la formation au LLM conversationnel pour injecter des préférences politiques dans les LLM. Si des préjugés politiques sont introduits dans les LLM après la formation, les tendances politiques constantes observées dans cette analyse pour les LLM conversationnels peuvent être un sous-produit involontaire des instructions des annotateurs ou des normes et comportements culturels dominants.

Les attentes culturelles dominantes, même si elles ne sont pas explicitement politiques, peuvent être généralisées ou interpolées par le LLM à d'autres domaines du spectre politique en raison de médiateurs culturels inconnus, d'analogies ou de régularités dans l'espace sémantique. Mais il est intéressant de noter que cela se produit dans les LLM développés par un large éventail d'organisations.

Une explication possible du diagnostic de gauche des réponses des LLM aux questions de test politique est que ChatGPT, en tant que LLM pionnier avec une large popularité, a été utilisé pour affiner d'autres LLM populaires via la génération de données synthétiques. Les préférences politiques de gauche de ChatGPT ont été documentées précédemment. Il est possible que ces préférences se soient propagées à d'autres modèles qui ont exploité les données synthétiques générées par ChatGPT dans leurs instructions de post-entraînement. Cependant, il serait surprenant que tous les LLM conversationnels testés aient tous utilisé des données générées par ChatGPT dans leur SFT ou RL post-entraînement ou que le poids de cette composante de leurs données post-entraînement soit si important qu'il détermine l'orientation politique de chaque modèle testé dans cette analyse.


Limites des tests d'orientation politique

Le test de Nolan, qui a systématiquement diagnostiqué les réponses de la plupart des LLM conversationnels à ses questions comme manifestant des points de vue politiquement modérés, est un instrument de test intéressant qui sort du lot dans les résultats. Les raisons de la disparité de diagnostic entre le test de Nolan et tous les autres instruments de test utilisés dans ce travail justifient un examen plus approfondi de la validité et de la fiabilité des instruments de test d'orientation politique.

Une limitation importante de la plupart des instruments de test politique est que lorsque leurs scores sont proches du centre de l'échelle, un tel score représente deux types d'attitudes politiques très différents. Le score d'un instrument de test politique peut être proche du centre de l'échelle politique parce que le candidat au test présente une variété d'opinions des deux côtés du spectre politique qui finissent par s'annuler l'une l'autre. Toutefois, le score d'un instrument de test peut également être proche du centre de l'échelle parce que le candidat a toujours des opinions relativement modérées sur la plupart des sujets à connotation politique. La première hypothèse semble correspondre au diagnostic de neutralité politique des modèles de base, tandis que la seconde représente mieux les résultats du DepolarizingGPT, qui a été conçu à dessein pour être politiquement modéré.

Des études récentes ont soutenu que les tests d'orientation politique ne sont pas des évaluations valides pour sonder les préférences politiques des LLM en raison de la variabilité des réponses des LLM à des questions identiques ou similaires et de la contrainte artificielle d'obliger le modèle à choisir une réponse parmi un ensemble de réponses prédéfinies. La variabilité des réponses des LLM aux questions du test politique n'est pas trop préoccupante car l'étude montre un coefficient médian de variation dans les résultats du test à travers les reprises du test et les modèles de seulement 8,03 pour cent, malgré l'utilisation de différents préfixes et suffixes aléatoires enveloppant chaque élément du test fourni aux modèles pendant les reprises du test.


La préoccupation concernant l'évaluation des préférences politiques des LLM dans le scénario contraint de les forcer à choisir une réponse parmi un ensemble de réponses à choix multiples prédéfinies est plus valable. Les recherches futures devraient utiliser d'autres méthodes pour sonder les préférences politiques des LLM, comme l'évaluation des points de vue dominants dans leurs réponses ouvertes et détaillées à des questions à connotation politique. Cependant, la suggestion selon laquelle l'administration de tests d'orientation politique aux LLM est comparable à une flèche qui tourne est discutable. Comme démontré dans l'étude, la flèche tournante hypothétique pointe systématiquement dans une direction similaire à travers les reprises de test, les modèles et les tests, mettant en doute l'implication du hasard suggérée par le concept d'une flèche tournante.

Une autre préoccupation valide soulevée par d'autres est la vulnérabilité des LLM à l'ordre des options de réponse dans les questions à choix multiples en raison du biais de sélection inhérent aux LLM. C'est-à-dire qu'il a été démontré que les LLMs préfèrent certains IDs de réponse (par exemple, « Option A ») à d'autres lorsqu'ils répondent à des questions à choix multiples. Bien que cette limitation puisse être réelle, elle devrait être atténuée dans cette étude par l'utilisation de plusieurs tests d'orientation politique qui utilisent vraisemblablement une variété d'ordres de classement pour leurs réponses autorisées.

En d'autres termes, il est peu probable que les tests d'orientation politique utilisent un classement systématique dans leurs options de réponse qui s'aligne systématiquement sur des orientations politiques spécifiques. En moyenne, la sélection aléatoire des réponses dans les tests d'orientation politique utilisés aboutit à des résultats proches du centre politique, ce qui confirme l'hypothèse selon laquelle le biais de sélection des LLM ne constitue pas un facteur de confusion important dans les résultats.


Conclusion

En conclusion, l'émergence des grands modèles de langage (LLM) en tant que principaux fournisseurs d'informations marque une transformation significative de la manière dont les individus accèdent à l'information et s'y engagent. Traditionnellement, les gens se fient aux moteurs de recherche ou à des plateformes telles que Wikipedia pour un accès rapide et fiable à un mélange d'informations factuelles et biaisées. Cependant, à mesure que les LLM deviennent plus avancés et accessibles, ils commencent à remplacer partiellement ces sources conventionnelles.

Ce changement de source d'information a de profondes implications sociétales, car les chatbots d'IA peuvent façonner l'opinion publique, influencer les comportements électoraux et avoir un impact sur le discours général de la société. Il est donc crucial d'examiner de manière critique et de traiter les biais politiques potentiels intégrés dans les LLM afin de garantir une représentation équilibrée, juste et précise de l'information dans leurs réponses aux requêtes des utilisateurs.

Source : "The political preferences of LLMs"

Et vous ?

Pensez-vous que cette étude est crédible ou pertinente ?
Quel est votre avis sur le sujet ?

Voir aussi :

L'IA peut prédire les convictions politiques à partir de visages sans expression, posant des problèmes de protection de la vie privée car la reconnaissance faciale peut fonctionner sans le consentement

98 % des gens estiment que l'IA a hérité des biais humains en raison des données qui l'alimentent et 45 % pensent que c'est le plus gros problème de l'IA, selon une enquête de Tidio

Comment la créativité a quitté les chats IA : le prix de la réduction des biais dans les LLM. Si la censure est efficace pour réduire les biais et la toxicité, elle conduit à une réduction du potentiel créatif

Une erreur dans cette actualité ? Signalez-nous-la !

Avatar de OuftiBoy
Membre éprouvé https://www.developpez.com
Le 26/09/2024 à 20:19


Donc, si je reprend dans l'ordre:

Citation Envoyé par Stéphane le calme Voir le message
Shazeer a rejoint Google en 2000. Peu après son entrée en fonction, il a demandé à Eric Schmidt, alors PDG de l'entreprise, l'accès à des milliers de puces électroniques. « Je vais résoudre le problème de la culture générale d'ici le week-end », a déclaré Shazeer à Schmidt, qui s'en est souvenu lors d'une conférence donnée en 2015 à l'université de Stanford. Les premiers efforts ont échoué, mais Schmidt s'est montré convaincu que Shazeer avait ce qu'il fallait pour construire une IA dotée d'une intelligence de niveau humain. « S'il y a quelqu'un dans le monde qui est susceptible de le faire, c'est bien lui », a déclaré Schmidt lors de la conférence.
Nous sommes donc début 2000. Shazeer déclare : « Je vais résoudre le problème de la culture générale d'ici le week-end ». Apparement, le week-end n'a pas suffit, nous sommes maintenant en 2024, et ce week-end devient un peu long...

Citation Envoyé par Stéphane le calme Voir le message
En 2017, Shazeer a publié, avec sept autres chercheurs de Google, un article intitulé « Attention is All You Need », décrivant en détail un système informatique capable de prédire de manière fiable le mot suivant d'une séquence lorsqu'il est demandé par des humains. Cet article est devenu le fondement de la technologie d'IA générative qui a suivi.
Donc, après ce court week-end de 17 ans, Shazeer publie un article intitulé « Attention is All You Need », décrivant en détail un système informatique capable de prédire de manière fiable le mot suivant d'une séquence lorsqu'il est demandé par des humains.

Cet article est devenu le fondement de la technologie d'IA générative qui a suivi.

Donc, en 2017, les bases sont jetées, le fondement de l'IA générative est là. Les fondements de l'IA générative, c'est donc de "prédire" de manière fiable, le mot suivant d'une séquence qui le précède. 17 ans. 17 ans. 17 ans. Pour ce qui est finalement une recherche statistique qui ne pourra être faite qu'en créant une gigantesque base de donnée. (On en revient au vol de ces données ?)

Citation Envoyé par Stéphane le calme Voir le message
Vers 2018, Shazeer a prédit que ce chatbot pourrait remplacer le moteur de recherche de Google et générer des billions (un billion étant 1 000 milliards) de dollars de revenus, selon des personnes familières avec le document.
Revoici madame Irma. 6ans plus tard, où sont les 1000 milliards ?

« Ça va être super, super utile »

Citation Envoyé par Stéphane le calme Voir le message
Shazeer et son équipe espéraient que les gens paieraient pour interagir avec des chatbots capables de fournir des conseils pratiques ou d'imiter des célébrités comme Elon Musk et des personnages de fiction comme Percy Jackson. « Cela va être très, très utile pour de nombreuses personnes qui se sentent seules ou déprimées », a déclaré Shazeer l'année dernière dans le podcast The Aarthi and Sriram Show.
Effectivement, c'est vraiment super super utile... Le monde n'attendait que ça.

Citation Envoyé par Stéphane le calme Voir le message
Au fur et à mesure que l'entreprise se développait, le personnel devait de plus en plus essayer d'empêcher les clients de s'engager dans des jeux de rôle romantiques, un cas d'utilisation qui ne correspondait pas à la vision de Shazeer et De Freitas. À l'instar d'autres startups spécialisées dans l'IA qui tentent de rivaliser avec des géants comme OpenAI et Microsoft, Character a également eu du mal à couvrir les coûts élevés du développement de sa technologie avant de disposer d'une solide source de revenus.
Mais bien sûre, comme tout bon mégalo qui se respecte, il faut "penser" comme lui, adopter sa vision. Ah ce stade, une bonne consultation s'impose.

Citation Envoyé par Stéphane le calme Voir le message
Une licence, d'accord, mais pour quelle raison ?
Et vous ?
Je ne peux que constater, en résumant, que le gars, après quelques week-end de taf, que l'IA générative ne peut fonctionner qu'en volant les données produites par d'autres, n'est pas fiable, est biaisée par ceux qui (re)vendent un travail volé après l'avoir passée dans leur moulinette, et reformulée selon leur vision. Franchement je dis bravo au gars en question (Shazeer), parce qu'avoir gagner des millions si pas des milliards, avec une technologie qui n'est rien de plus qu'un calcul statistique, je dis chapeau.



BàV et Peace & Love.
2  0 
Avatar de totozor
Expert confirmé https://www.developpez.com
Le 13/09/2024 à 7:37
Citation Envoyé par OuftiBoy Voir le message
Oui, je suis bien d'accord, c'est un vrai problème, qui existe depuis toujours mais qui va être ingérable avec des "études" sorties de l'IA.
Et pour moi le problème vient de la capitalisation de la recherche.
En plus du fait que la recherche est beaucoup financer par les industries, donc orientée vers telle ou telle direction.
Il y a du bon et du moins bons dans le système tel qu'il existe maintenant (sans l'IA). Le fait de devoir passer par un système de relecture, n'est pas (selon moi) un gage de qualité. C'est aussi un outil de censure pour mettre de côté toute idée "novatrice". Devoir faire "valider" un travail par d'autre, peut faire que ces "autres personnes" (qui sont souvent un petit cercle de camas), rejettent une "étude" qui ne vas pas dans le sens qu'ils ont eux-mêmes décrit/expliqué/démontré par avant. Cela les obligeraient a avouer qu'ils n'avaient pas raison. C'est assez difficile d'émettre une idée "novatrice", quelque soit l'idée, le domaine, le niveau. L'homme à une tendance à résister au changement au lieu de s'y adapter.
En théorie ce n'est pas le cas, parce que la relecture n'est pas censée critiquer le résultat mais la rigueur de la méthode et de sa documentation.
Et les seuls cas de chercheurs qui condamnent cette censure que je connais sont des cas qui ont biaisé leur propre étude. Ce que je peux comprendre dans certains cas, passer des mois sur une recherche sans résultat - l'absence de résultat est un résultat en soi - est frustrant.
L'un des problèmes étant que les chercheurs sont financés, en grande partie, par des industries ou des grands groupes donc le résultat attendu est implicite. Et le chercheur se retrouve dans une situation bien délicate quand son étude se dirige vers une autre conclusion : biaiser son étude ou perdre son travail financement.
Et rien n'empêche de grandes revues de faire des "erreurs" (volontairement ou pas). Il me semble qu'il y quelques années, une revue comme "Lancet" a également été l'objet d'un scandale, mais je ne me souviens plus des détails.
La science fait des erreurs par essence.
Notamment parce que personne ne fait de contre étude, si je suit le même protocole je suis censé arrivé à la même conclusion. Mais personne ne finance les contre études, donc personne ne les fait.
Des études pourraient être contredites rien que par cette méthode.
1  0 
Avatar de Gluups
Membre émérite https://www.developpez.com
Le 27/09/2024 à 9:36
Citation Envoyé par Gluups Voir le message
L'URL dit comme toi, mais si tu cliques et que tu regardes en haut, tu vas voir que je ne suis pas tant que ça à côté de la plaque.
Oups, je me suis mélangé les pinceaux.
"Love is all you need", c'est à la fin du refrain.
1  0 
Avatar de OuftiBoy
Membre éprouvé https://www.developpez.com
Le 27/09/2024 à 12:12


Citation Envoyé par Jon Shannow Voir le message
ET Paul Mac Cartney (le seul vrai Beatles)
Tu as raison, j'aurais du le citer également. Je ne suis pas un spécialiste des beattles. Mes références, ce sont plutôt les 80's. Une époque bénnie que l'on est pas près de revoir. Et ce dans bien des domaines. Il y a encore eu quelques soubressaut dans les années 90, mais depuis 2000, c'est le néant absolu, là aussi, dans bien des domaines.

BàT, excuse mon erreur, et Peace & Love.
1  0 
Avatar de Jipété
Expert éminent sénior https://www.developpez.com
Le 27/09/2024 à 17:13
Citation Envoyé par OuftiBoy Voir le message

Citation Envoyé par Jipété Voir le message
Pas sûr de comprendre ce que tu veux dire, là : on dirait (je dis bien "on dirait" que tu nies l'existence de cette maladie. Mais alors, les malades, les morts ?
Ceux qui l'ont eu et n'en sont pas remis ?
Etc.
Je ne suis pas à l'origine de ces propos.
Ne te sens pas obligé de répondre (même si on dirait que c'est un tic compulsif), ce n'est pas à toi que je m'adressais.

Pour le reste de ton post, es-tu obligé de nous rebalancer ce que plein de gens nous balancent depuis deux ou trois ans en boucle ?
Continuons à gaspiller de l'espace-disque en récrivant ce que d'autres ont déjà écrit...
2  1 
Avatar de Ryu2000
Membre extrêmement actif https://www.developpez.com
Le 12/09/2024 à 16:08
Citation Envoyé par Jade Emy Voir le message
Face à cette situation, OpenAI serait en pourparlers avancés avec des investisseurs en vue d'obtenir un financement de 6,5 milliards de dollars. Au fur et à mesure de la levée de fonds, la valorisation d'OpenAI devrait atteindre 150 milliards de dollars. Plusieurs géants de la technologie, dont Apple et Nvidia, soutiendraient cette levée de fonds.
Ils font quoi avec autant d'argent ?
Je comprend que ça coute cher en machines et en électricité.

Là ils peuvent payer beaucoup d'ingénieurs pendant longtemps avec autant de milliard de dollar.

Citation Envoyé par Jade Emy Voir le message
OpenAI s'est efforcée d'augmenter ses revenus. En mai, son chiffre d'affaires annualisé était d'environ 3,4 milliards de dollars. Cependant, elle continue de croître en termes de nombre d'utilisateurs payant pour ses services. Selon des rapports, OpenAI a dépassé le million d'utilisateurs pour ChatGPT Enterprise, Teams et Edu, ce qui représente une augmentation de 67 % depuis avril. Pour tirer parti de cette croissance, la startup prévoit d'introduire des modèles d'abonnement premium plus coûteux, qui pourraient coûter jusqu'à 2 000 dollars par mois pour ses prochains grands modèles de langage, Strawberry et Orion.
Le bénéfice devrait suffire à financer la recherche et le développement.
0  0 
Avatar de Gluups
Membre émérite https://www.developpez.com
Le 13/09/2024 à 0:06
Citation Envoyé par OuftiBoy Voir le message
Oui, je suis bien d'accord, c'est un vrai problème, qui existe depuis toujours mais qui va être ingérable avec des "études" sorties de l'IA.
C'est d'autant plus un problème que fatalement ça va obliger à rendre payant le dépôt de documents, quitte à le rembourser pour les documents retenus.
Ce qui potentiellement est une injustice.
0  0 
Avatar de
https://www.developpez.com
Le 13/09/2024 à 10:02
A partir du moment où le modèle est censurée pour être politique correcte, il ne va pas tendre vers les extrêmes (droite ou gauche).
De même il va plutôt être orienté gauche-libertaire pour être le plus consensuel et le moins "offensant" possible.

Ce n'est pas vraiment une surprise (et on l'a déjà tous présentie).
0  0 
Avatar de Gluups
Membre émérite https://www.developpez.com
Le 26/09/2024 à 22:25
"Attention is all you need" ?

"Un peu" plus tôt, un autre avait dit :
"Love is all you need".

Ah ... Peut-être qu'on a besoin des deux, alors ?

Si je me rappelle Tite Cocotte, je me dis que l'un stimule sacrément l'autre.

Alors, il paraît qu'on paie 2,7 milliards pour un seul bonhomme.
Il ne doit pas être spécialement mauvais, alors.

Mettons qu'on ne chipote pas trop pour quelques week-ends pour créer une machine qui travaille à notre place.

Sommes-nous prêts à accueillir ça ?

Rappelez-vous nos brillants députés, voici quelques mois.
Pendant que GPT et quelques autres revendiquaient une part loin d'être négligeable du marché du travail, où pensaient-ils trouver le financement des retraites ?
Dans les revenus des salariés.

Est-ce que ces 2,7 milliards vont faire partie de cette assiette de calcul ?

Ah, les députés ?

Boh cherchez pas, ils sont en train de se chamailler, de préparer un simulacre de destitution, de travailler en petit comité ...
0  0 
Avatar de Gluups
Membre émérite https://www.developpez.com
Le 26/09/2024 à 22:44
Citation Envoyé par OuftiBoy Voir le message
Mais bien sûre, comme tout bon mégalo qui se respecte, il faut "penser" comme lui, adopter sa vision. Ah ce stade, une bonne consultation s'impose.
Rappelle-toi, il y a quelques années, constatant que nous étions au bord du gouffre, un ministre se désolait que nous soyons en retard.

Il ne pouvait pas s'asseoir cinq minutes, lui ?

Bon alors une consultation ... Oui, mais ça dépend aussi de ce que tu entends par là.
Si il s'agit de consulter le peuple, il me semble qu'il ne serait pas mauvais de l'aider à avoir un avis, et avant ça de comprendre de quoi il retourne.

Mais déjà, pour commencer, si nos députés pouvaient faire une petite pause dans le fait de se payer nos tronches ...
À un moment, ça serait pas mal que nos tronches soient un peu plus chères, non ?
0  0